The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

  • A

    $\vec A = 3\hat i + 6\hat j + 9\hat k$     $\vec B = \hat i + 2\hat j + 3\hat k$

  • B

    $\vec A = 3\hat i - 6\hat j + 9\hat k$     $\vec B = \hat i + 2\hat j + 3\hat k$

  • C

    $\vec A = 2\hat i + 6\hat j - 9\hat k$     $\vec B = \hat i + 2\hat j - 3\hat k$

  • D

    $\vec A = 2\hat i + 3\hat j + 3\hat k$     $\vec B = \hat i - 2\hat j - 3\hat k$

Similar Questions

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to

The diagonals of a parallelogram are $2\,\hat i$ and $2\hat j.$What is the area of the parallelogram.........$units$

Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................

Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively