The two vectors $\vec A$ and $\vec B$ that are parallel to each other are
$\vec A = 3\hat i + 6\hat j + 9\hat k$ $\vec B = \hat i + 2\hat j + 3\hat k$
$\vec A = 3\hat i - 6\hat j + 9\hat k$ $\vec B = \hat i + 2\hat j + 3\hat k$
$\vec A = 2\hat i + 6\hat j - 9\hat k$ $\vec B = \hat i + 2\hat j - 3\hat k$
$\vec A = 2\hat i + 3\hat j + 3\hat k$ $\vec B = \hat i - 2\hat j - 3\hat k$
Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to
The diagonals of a parallelogram are $2\,\hat i$ and $2\hat j.$What is the area of the parallelogram.........$units$
Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................